Probabilistic inference with noisy-threshold models based on a CP tensor decomposition

نویسندگان

  • Jirí Vomlel
  • Petr Tichavský
چکیده

The specification of conditional probability tables (CPTs) is a difficult task in the construction of probabilistic graphical models. Several types of canonical models have been proposed to ease that difficulty. Noisy-threshold models generalize the two most popular canonical models: the noisy-or and the noisy-and. When using the standard inference techniques the inference complexity is exponential with respect to the number of parents of a variable. More efficient inference techniques can be employed for CPTs that take a special form. CPTs can be viewed as tensors. Tensors can be decomposed into linear combinations of rank-one tensors, where a rank-one tensor is an outer product of vectors. Such decomposition is referred to as Canonical Polyadic (CP) or CANDECOMP-PARAFAC (CP) decomposition. The tensor decomposition offers a compact representation of CPTs which can be efficiently utilized in probabilistic inference. In this paper we propose a CP decomposition of tensors corresponding to CPTs of threshold functions, exactly `-out-of-k functions, and their noisy counterparts. We prove results about the symmetric rank of these tensors in the real and complex domains. The proofs are constructive and provide methods for CP decomposition of these tensors. An analytical and experimental comparison with the parentdivorcing method (which also has a polynomial complexity) shows superiority of the CP decomposition-based method. The experiments were performed on subnetworks of the well-known QMRT-DT network generalized by replacing noisy-or by noisy-threshold models.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computationally efficient probabilistic inference with noisy threshold models based on a CP tensor decomposition

Conditional probability tables (CPTs) of threshold functions represent a generalization of two popular models – noisy-or and noisy-and. They constitute an alternative to these two models in case they are too rough. When using the standard inference techniques the inference complexity is exponential with respect to the number of parents of a variable. In case the CPTs take a special form (in thi...

متن کامل

InfTucker: t-Process based Infinite Tensor Decomposition

Tensor decomposition is a powerful tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—conduct multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g. missing data and binary data), and (iii) noisy observations and outliers. To ad...

متن کامل

Infinite Tucker Decomposition: Nonparametric Bayesian Models for Multiway Data Analysis

Tensor decomposition is a powerful computational tool for multiway data analysis. Many popular tensor decomposition approaches—such as the Tucker decomposition and CANDECOMP/PARAFAC (CP)—amount to multi-linear factorization. They are insufficient to model (i) complex interactions between data entities, (ii) various data types (e.g.missing data and binary data), and (iii) noisy observations and ...

متن کامل

An Approximate Tensor-Based Inference Method Applied to the Game of Minesweeper

We propose an approximate probabilistic inference method based on the CP-tensor decomposition and apply it to the well known computer game of Minesweeper. In the method we view conditional probability tables of the exactly -out-of-k functions as tensors and approximate them by a sum of rank-one tensors. The number of the summands is min{l + 1, k − l + 1}, which is lower than their exact symmetr...

متن کامل

Vectorial Dimension Reduction for Tensors Based on Bayesian Inference

Dimensionality reduction for high-order tensors is a challenging problem. In conventional approaches, higher order tensors are “vectorized” via Tucker decomposition to obtain lower order tensors. This will destroy the inherent high-order structures or resulting in undesired tensors, respectively. This paper introduces a probabilistic vectorial dimensionality reduction model for tensorial data. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 55  شماره 

صفحات  -

تاریخ انتشار 2014